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Abstract

We discuss existence, uniqueness and structural stability of solutions of nonlinear differential
equations of fractional order. The differential operators are taken in the Riemann-Liouville
sense and the initial conditions are specified according to Caputo’s suggestion, thus allowing
for interpretation in a physically meaningful way. We investigate in particular the dependence
of the solution on the order of the differential equation and on the initial condition and we
relate our results to the selection of appropriate numerical schemes for the solution of fractional
differential equations.

1 Introduction

Differential equations may involve Riemann-Liouville differential operators of fractional order q > 0,
which take the form

Dq
x0

y(x) :=
1

Γ(m− q)

dm

dxm

∫ x

x0

y(u)

(x− u)q−m+1
du (1.1)

where m is the integer defined by m − 1 < q ≤ m (see [15, 16]). Such equations have recently
proved to be valuable tools in the modelling of many physical phenomena [5, 8, 9, 13, 14]. The case
0 < q < 1 seems to be particularly important, but there are also some applications for q > 1. It is
well known that Dq has an m-dimensional kernel, and therefore we certainly need to specify m initial
conditions in order to obtain a unique solution of the straightforward form of a fractional differential
equation, viz.

Dqy(x) = f(x, y(x)) (1.2)

with some given function f . Here and in the following, we assume without loss of generality that
x0 = 0, and henceforth refrain from explicitly mentioning this parameter.

Now, according to the standard mathematical theory [16, §42], the initial conditions corresponding
to (1.2) must be of the form

dq−k

dxq−k
y(x)|x=0+ = bk, k = 1, 2, . . . ,m, (1.3)

with given values bk. Thus we are forced to specify some fractional derivatives of the function y. In
practical applications, these values are frequently not available, and it may not even be clear what
their physical meaning is (see [5]). Therefore Caputo [1] has suggested that one should incorporate
the classical derivatives (of integer order) of the function y, as they are commonly used in initial
value problems with integer-order equations, into the fractional-order equation, giving

Dq(y − Tm−1[y])(x) = f(x, y(x)), (1.4a)

where Tm−1[y] is the Taylor polynomial of order (m− 1) for y, centered at 0. Then, one can specify
the initial conditions in the classical form

y(k)(0) = y
(k)
0 , k = 0, 1, . . . , m− 1. (1.4b)
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It is the problem described in (1.4a) and (1.4b) that we shall address in the present paper. Using
Laplace transform methods it has been shown in [11] that this problem has a unique solution under
some strong conditions (in particular, the linearity of the differential equation). Our first aim is to
give a corresponding result for the nonlinear case, using as few assumptions as possible. This will be
described in §2. In §3, we look at the question as to how the solution y varies when we change the
order q, the initial values, or the function f .

In the final section of the paper, we consider how the theoretical results may be applied in
practical cases. In particular we consider the performance of existing numerical methods for solving
fractional differential equations when the equations to be solved depend upon parameters that must
be estimated and are subject to errors. We are aware of applications, from materials science, for
example, in which the order of the equation is a parameter estimated only to a certain degree of
accuracy. We consider, based on the results of §3, what is the optimal choice of step length for a given
method in order to gain maximum accuracy in the approximate solution at minimum computational
cost.

2 Existence and Uniqueness of the Solution

Looking at the questions of existence and uniqueness of the solution, we can present the following
results that are very similar to the corresponding classical theorems known in the case of first-order
equations. Only the scalar setting will be discussed explicitly; the generalization to vector-valued
functions is straightforward.

Theorem 2.1 (Existence) Assume that D := [0, χ∗]×[y
(0)
0 −α, y

(0)
0 +α] with some χ∗ > 0 and some

α > 0, and let the function f : D → R be continuous. Furthermore, define χ := min{χ∗, (αΓ(q +
1)/ ‖f‖∞)1/q}. Then, there exists a function y : [0, χ] → R solving the initial value problem (1.4).

Theorem 2.2 (Uniqueness) Assume that D := [0, χ∗]× [y
(0)
0 − α, y

(0)
0 + α] with some χ∗ > 0 and

some α > 0. Furthermore, let the function f : D → R be bounded on D and fulfil a Lipschitz
condition with respect to the second variable, i.e.

|f(x, y)− f(x, z)| ≤ L|y − z|

with some constant L > 0 independent of x, y, and z. Then, denoting χ as in Theorem 2.1, there
exists at most one function y : [0, χ] → R solving the initial value problem (1.4).

For the proofs of these two theorems, we shall use the following very simple result. It can be
proved easily by applying the integral operator of order q, given by

Iq(φ)(x) =
1

Γ(q)

∫ x

0

(x− z)q−1φ(z)dz,

to both sides of (1.4a), and using some classical results from the fractional calculus [16, §2].

Lemma 2.1 If the function f is continuous, then the initial value problem (1.4) is equivalent to the
nonlinear Volterra integral equation of the second kind

y(x) =
m−1∑

k=0

xk

k!
y(k)(0) +

1

Γ(q)

∫ x

0

(x− z)q−1f(z, y(z))dz (2.1)

with m− 1 < q ≤ m. In other words, every solution of the Volterra equation (2.1) is also a solution
of our original initial value problem (1.4), and vice versa.
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We may therefore focus our attention on equation (2.1). This equation is weakly singular if
0 < q < 1, and regular for q ≥ 1. Thus, in the latter case, the claims of the two theorems follow
immediately from classical results in the theory of Volterra equations, cf., e.g., [12]. However, in the
former case (which is the case required in most of the practical applications), we must give explicit
proofs.

The proof of the uniqueness theorem will be based on the following generalization of Banach’s
fixed point theorem that we take from [17].

Theorem 2.3 Let U be a nonempty closed subset of a Banach space E, and let αn ≥ 0 for every n
and such that

∑∞
n=0 αn converges. Moreover, let the mapping A : U → U satisfy the inequality

‖Anu− Anv‖ ≤ αn ‖u− v‖ (2.2)

for every n ∈ N and every u, v ∈ U . Then, A has a uniquely defined fixed point u∗. Furthermore,
for any u0 ∈ U , the sequence (Anu0)

∞
n=1 converges to this fixed point u∗.

Proof of Theorem 2.2.
As we identified previously, we need only discuss the case 0 < q < 1. In this situation, the

Volterra equation (2.1) reduces to

y(x) = y
(0)
0 +

1

Γ(q)

∫ x

0

(x− z)q−1f(z, y(z))dz. (2.3)

We thus introduce the set U := {y ∈ C[0, χ] :
∥∥∥y − y

(0)
0

∥∥∥
∞
≤ α}. Obviously, this is a closed subset

of the Banach space of all continuous functions on [0, χ], equipped with the Chebyshev norm. Since

the constant function y ≡ y
(0)
0 is in U , we also see that U is not empty. On U we define the operator

A by

(Ay)(x) := y
(0)
0 +

1

Γ(q)

∫ x

0

(x− z)q−1f(z, y(z))dz. (2.4)

Using this operator, the equation under consideration can be rewritten as

y = Ay,

and in order to prove our desired uniqueness result, we have to show that A has a unique fixed point.
Let us therefore investigate the properties of the operator A.

First we note that, for 0 ≤ x1 ≤ x2 ≤ χ,

|(Ay)(x1)− (Ay)(x2)| =
1

Γ(q)

∣∣∣∣
∫ x1

0

(x1 − z)q−1f(z, y(z))dz

−
∫ x2

0

(x2 − z)q−1f(z, y(z))dz

∣∣∣∣

=
1

Γ(q)

∣∣∣∣
∫ x1

0

(
(x1 − z)q−1 − (x2 − z)q−1

)
f(z, y(z))dz

+

∫ x2

x1

(x2 − z)q−1f(z, y(z))dz

∣∣∣∣

≤ ‖f‖∞
Γ(q)

∣∣∣∣
∫ x1

0

(
(x1 − z)q−1 − (x2 − z)q−1

)
dz

+

∫ x2

x1

(x2 − z)q−1dz

∣∣∣∣

=
‖f‖∞

Γ(q + 1)
(2(x2 − x1)

q + xq
1 − xq

2) , (2.5)
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proving that Ay is a continuous function. Moreover, for y ∈ U and x ∈ [0, χ], we find

∣∣∣(Ay)(x)− y
(0)
0

∣∣∣ =
1

Γ(q)

∣∣∣∣
∫ x

0

(x− z)q−1f(z, y(z))dz

∣∣∣∣ ≤
1

Γ(q + 1)
‖f‖∞ xq

≤ 1

Γ(q + 1)
‖f‖∞ χq ≤ 1

Γ(q + 1)
‖f‖∞

αΓ(q + 1)

‖f‖∞
= α.

Thus, we have shown that Ay ∈ U if y ∈ U , i.e. A maps the set U to itself.
The next step is to prove that, for every n ∈ N0 and every x ∈ [0, χ], we have

‖Any − Anỹ‖L∞[0,x] ≤
(Lxq)n

Γ(1 + qn)
‖y − ỹ‖L∞[0,x] . (2.6)

This can be seen by induction. In the case n = 0, the statement is trivially true. For the induction
step n− 1 7→ n, we write

‖Any − Anỹ‖L∞[0,x] =
∥∥A(An−1y)− A(An−1ỹ)

∥∥
L∞[0,x]

=
1

Γ(q)
sup

0≤w≤x

∣∣∣∣∣∣

w∫

0

(w − z)q−1
[
f(z, An−1y(z))− f(z, An−1ỹ(z))

]
dz

∣∣∣∣∣∣
.

In the next steps, we use the Lipschitz assumption on f and the induction hypothesis and find

‖Any − Anỹ‖L∞[0,x] ≤ L

Γ(q)
sup

0≤w≤x

w∫

0

(w − z)q−1
∣∣An−1y(z)− An−1ỹ(z)

∣∣ dz

≤ L

Γ(q)

x∫

0

(x− z)q−1 sup
0≤w≤z

∣∣An−1y(w)− An−1ỹ(w)
∣∣ dz

≤ Ln

Γ(q)Γ(1 + q(n− 1))

x∫

0

(x− z)q−1zq(n−1) sup
0≤w≤z

|y(w)− ỹ(w)| dz

≤ Ln

Γ(q)Γ(1 + q(n− 1))
sup

0≤w≤x
|y(w)− ỹ(w)|

x∫

0

(x− z)q−1zq(n−1)dz

=
Ln

Γ(q)Γ(1 + q(n− 1))
‖y − ỹ‖L∞[0,x]

Γ(q)Γ(1 + q(n− 1))

Γ(1 + qn)
xqn

which is our desired result (2.6). As a consequence, we find, taking Chebyshev norms on our funda-
mental interval [0, χ],

‖Any − Anỹ‖∞ ≤ (Lχq)n

Γ(1 + qn)
‖y − ỹ‖∞ .

We have now shown that the operator A fulfils the assumptions of Theorem 2.3 with αn =
(Lχq)n/Γ(1 + qn). In order to apply that theorem, we only need to verify that the series

∑∞
n=0 αn

converges. This, however, is a well known result; the limit

∞∑
n=0

(Lχq)n

Γ(1 + qn)
=: Eq(Lχq)

is the Mittag-Leffler function of order q, evaluated at Lχq (see [7, Chapter 18] for general results
on Mittag-Leffler functions or [10] for details on the role of these functions in fractional calculus).
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Therefore, we may apply the fixed point theorem and deduce the uniqueness of the solution of our
differential equation. 2

Remark 1ex Note that Theorem 2.3 not only asserts that the solution is unique; it actually gives
us (at least theoretically) a means of determining this solution by a Picard-type iteration process.
Remark 1ex Without the Lipschitz assumption on f the solution need not be unique. To see this,
look at the simple one-dimensional example

Dqy = yk

with initial condition y(0) = 0. Consider 0 < k < 1, so that the function on the right-hand side of
the differential equation is continuous, but the Lipschitz condition is violated. Obviously, the zero
function is a solution of this initial value problem. However, setting pj(x) := xj, we recall that

Dqpj(x) =
Γ(j + 1)

Γ(j + 1− q)
pj−q(x).

Thus, the function y(x) = k
√

Γ(j + 1)/Γ(j + 1− q)xj with j = q/(1 − k) also solves the problem,
proving that the solution is not unique.
Proof of Theorem 2.1.

We begin by arguments similar to those of the previous proof. In particular, we use the same
operator A (defined in (2.4)) and recall that it maps the nonempty, convex and closed set U = {y ∈
C[0, χ] :

∥∥∥y − y
(0)
0

∥∥∥
∞
≤ α} to itself.

We shall now prove that A is a continuous operator. A stronger result, equation (2.6), has been
derived above, but in that derivation we used the Lipschitz property of f which we do not assume
to hold here. Therefore, we proceed differently and note that, since f is continuous on the compact
set D, it is uniformly continuous there. Thus, given an arbitrary ε > 0, we can find δ > 0 such that

|f(x, y)− f(x, z)| < ε

χq
Γ(q + 1) whenever |y − z| < δ. (2.7)

Now let y, ỹ ∈ U such that ‖y − ỹ‖ < δ. Then, in view of (2.7),

|f(x, y(x))− f(x, ỹ(x))| < ε

χq
Γ(q + 1) (2.8)

for all x ∈ [0, χ]. Hence,

|(Ay)(x)− (Aỹ)(x)| =
1

Γ(q)

∣∣∣∣
∫ x

0

(x− z)q−1(f(z, y(z))− f(z, ỹ(z)))

∣∣∣∣

≤ Γ(q + 1)ε

χqΓ(q)

∫ x

0

(x− z)q−1dz

=
εxq

χq
≤ ε,

proving the continuity of the operator A.
Then we look at the set of functions

A(U) := {Ay : y ∈ U}.
For z ∈ A(U) we find that, for all x ∈ [0, χ],

|z(x)| = |(Ay)(x)| ≤
∣∣∣y(0)

0

∣∣∣ +
1

Γ(q)

∫ x

0

(x− z)q−1|f(z, y(z))|dz

≤
∣∣∣y(0)

0

∣∣∣ +
1

Γ(q + 1)
‖f‖∞ χq,
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which means that A(U) is bounded in a pointwise sense. Moreover, for 0 ≤ x1 ≤ x2 ≤ χ, we have
found in the proof of Theorem 2.2, cf. equation (2.5), that

|(Ay)(x1)− (Ay)(x2)| ≤ ‖f‖∞
Γ(q + 1)

(xq
1 − xq

2 + 2(x2 − x1)
q) ≤ 2

‖f‖∞
Γ(q + 1)

(x2 − x1)
q.

Thus, if |x2 − x1| < δ, then

|(Ay)(x1)− (Ay)(x2)| ≤ 2
‖f‖∞

Γ(q + 1)
δq.

Noting that the expression on the right-hand side is independent of y, we see that the set A(U)
is equicontinuous. Then, the Arzelà-Ascoli Theorem yields that every sequence of functions from
A(U) has got a uniformly convergent subsequence, and therefore A(U) is relatively compact. Then,
Schauder’s Fixed Point Theorem asserts that A has got a fixed point. By construction, a fixed point
of A is a solution of our initial value problem. 2

3 Dependence on the Parameters

In a typical application (see, for example [5]), the main parameters of the equation, namely the
order q of the differential operator, the initial value(s) y0, . . ., and possibly also the right-hand side
f , depend on material constants that are only known up to a certain, usually moderate, accuracy.
For example, in the problem considered in [5], the knowledge of the values of q is usually restricted
to about two decimal digits. Therefore, it is important to investigate how the solution depends on
these parameters.

First we assume that the order q of the differential operator is not known precisely. We shall
consider the solutions of two initial value problems with neighbouring orders and in which all other
parameters and initial values remain constant. We shall present two theorems in this case. The first
theorem applies to a simple linear fractional differential equation and has particular appeal because
we can exploit an explicit representation of the solution (given by [10] through the use of Laplace
transforms) in terms of Mittag-Leffler functions. In our second theorem, we are able to generalise
our conclusions to certain nonlinear problems.

It is important to note that here we are considering a question which does not arise in the solution
of differential equations of integer order. The problem of knowing only imprecisely the order of the
equation is, to our knowledge, unique to the study of equations of fractional order, but here it is
an essential element in the analysis. We shall see that the algorithm chosen for the approximate
solution of the fractional equation depends on the order of the problem. Therefore the theorems we
present answer, inter alia, the question of how the solution depends on the accuracy with which we
can estimate the order of the problem, and will be a distinctive factor in the numerical analysis of
problems of this type.

Theorem 3.1 Let q > 0, ε > 0 satisfy m− 1 < q − ε < q ≤ m for some m ∈ {1, 2, 3} and let y, z be
the solutions, respectively, of the linear fractional differential equations:

Dq−ε(y − Tm−1[y])(x) = −y(x) + f(x), y(0) = y
(0)
0 , . . . , y(m−1)(0) = y

(m−1)
0 (3.1)

Dq(z − Tm−1[z])(x) = −z(x) + f(x), z(0) = y
(0)
0 , . . . , z(m−1)(0) = y

(m−1)
0 , (3.2)

For X < ∞, we have
‖y − z‖L∞[0,X] = O(ε) (3.3)

Proof.
We use results from [10] in the following way: First we observe that

Dq−ε (y − Tm−1[y]−Dε(z − Tm−1[y])) (x) = −y(x) + z(x) (3.4)
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It follows, since Dε(k)(x) = k(x) + O(ε)k(x), that Dq−ε(y − z − Tm−1[0])(x) = −(y − z)(x) + ε̃(x),
where ‖ε̃‖L∞[0,X] = O(ε), and in this differential equation, all the initial conditions are zero.

We can now apply the results of [10, (3.20 ff)] to obtain an expression for the solution y(x)−z(x)
in the form

y(x)− z(x) =

∫ x

0

ε̃(x− τ)κ(τ)dτ (3.5)

where κ is a continuous function. The conclusion of the theorem follows. 2

Remark 1ex Theorem 3.1 applies also to equations of the form

Dq(y − Tm−1[y])(x) = −ρqy(x) + f(x) (3.6)

by using a change of variable x 7→ x/ρ.
Next we present a more general result that includes a class of nonlinear problems:

Theorem 3.2 Assume that D := [0, χ∗] × [y0 − α, y0 + α] with some χ∗ > 0 and some α > 0.
Furthermore, let the function f : D → R be continuous and fulfil a Lipschitz condition with respect
to the second variable. Moreover let q > 0 and δ > 0 such that m − 1 < q − δ < q ≤ m. Assume
that y and z are the uniquely determined solutions of the initial value problems

Dq(y − Tm−1[y])(x) = f(x, y(x)), y(0) = y
(0)
0 , . . . , y(m−1)(0) = y

(m−1)
0 , (3.7)

and
Dq−δ(z − Tm−1[z])(x) = f(x, z(x)), z(0) = y

(0)
0 , . . . , z(m−1)(0) = y

(m−1)
0 , (3.8)

respectively. Then, we have the relation

‖y − z‖∞ = O(δ)

over any compact interval where both y and z exist.

Proof.
Our proof in this case cannot proceed by giving an explicit representation of the solution to our

equation but instead we utilise the Lipschitz condition and a Gronwall inequality to give the required
bound. We proceed as follows: Assume that y and z are the uniquely determined solutions of the
initial value problems

Dq−δ(y − Tm−1[y])(x) = f(x, y(x)), y(0) = y
(0)
0 , . . . , y(m−1)(0) = y

(m−1)
0 , (3.9)

and
Dq(z − Tm−1[z])(x) = f(x, z(x)), z(0) = y

(0)
0 , . . . , z(m−1)(0) = y

(m−1)
0 . (3.10)

Subtracting the equations, we obtain

Dq−δ(y − Tm−1[y]−Dδ(z − Tm−1[z]))(x) = f(x, y(x))− f(x, z(x)). (3.11)

Proceeding as in the proof of Theorem 3.1, and using the notation Iq introduced in §2 for the inverse
of the fractional differentiation operator, this equation can be written in the form

y(x)− z(x) = Iq[f(·, y(·))− f(·, z(·))](x) + O(δ)z(x)− Tm−1[y](x) (3.12)

The Lipschitz condition on the function f now allows us to deduce the integral inequality

‖y − z‖∞ ≤ LIq{‖f(·, y(·))− f(·, z(·))‖+ Mδ) (3.13)

and this leads to a Gronwall inequality (see, for example, [2])

|y(x)− z(x)| ≤ MδeX , x ∈ [0, X]. (3.14)

The conclusion of the theorem follows. 2

In our subsequent theorems, we move on to more familiar territory. First we present a Theorem
that estimates the dependence of the solution to errors in the estimate of the initial condition(s).
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Theorem 3.3 Assume that f , q, and D are as in Theorem 3.2. Furthermore, let y and z be the
uniquely determined solutions of the initial value problems

Dq(y − Tm−1[y])(x) = f(x, y(x)), y(0) = y
(0)
0 , . . . , y(m−1)(0) = y

(m−1)
0 , (3.15)

and
Dq(z − Tm−1[z])(x) = f(x, z(x)), z(0) = z

(0)
0 , . . . , z(m−1)(0) = z

(m−1)
0 , (3.16)

respectively. Then, we have the relation

‖y − z‖∞ = O( max
0≤k≤m−1

|y(k)
0 − z

(k)
0 |)

over any compact interval where both y and z exist.

Proof.
Once again, we begin by remarking that an explicit representation of the solution to simple linear

problems such as those discussed in Theorem 3.1 can be obtained following the methods in [10] (3.20
ff). The conclusions of the current theorem could then be deduced for the linear problem.

We present here the analysis for the more general case: From the equations

Dq(y − Tm−1[y])(x) = f(x, y(x)) (3.17)

Dq(z − Tm−1[z])(x) = f(x, z(x)) (3.18)

we easily obtain the relationships

|y(x)− z(x)| = |Iq[f(·, y(·))− f(·, z(·))](x) + Tm−1[y − z](x)| (3.19)

≤ Iq[L|y − z|](x) + M max
0≤k≤m−1

|y(k)
0 − z

(k)
0 | (3.20)

where L is the Lipschitz constant as above. The conclusion of the Theorem now follows by Gronwall’s
inequality as in Theorem 3.2. 2

Finally we assume that the right-hand side function f is the imprecisely known parameter.

Theorem 3.4 Assume that q and D are as in Theorem 3.2, and that f and f̃ are continuous on D
and fulfil Lipschitz conditions with respect to the second variable. Furthermore, let y and z be the
uniquely determined solutions of the initial value problems

Dq(y − Tm−1[y])(x) = f(x, y(x)), y(0) = y
(0)
0 , . . . , y(m−1)(0) = y

(m−1)
0 , (3.21)

and
Dq(z − Tm−1[z])(x) = f̃(x, z(x)), z(0) = y

(0)
0 , . . . , z(m−1)(0) = y

(m−1)
0 , (3.22)

respectively. Then, we have the relation

‖y − z‖∞ = O(‖f − f̃‖∞)

over any compact interval where both y and z exist.

Proof.
From the equations

Dq(y − Tm−1[y])(x) = f(x, y(x)) (3.23)

Dq(z − Tm−1[y])(x) = f̃(x, z(x)) (3.24)

8



we easily obtain the relationships

|y(x)− z(x)| =
∣∣∣Iq[f(·, y(·))− f(·, z(·))](x) + f(x, z(x))− f̃(x, z(x))

∣∣∣ (3.25)

≤ |Iq[f(·, y(·))− f(·, z(·))](x)|+ M‖f − f̃‖∞ (3.26)

≤ Iq[L|y − z|](x) + M‖f − f̃‖∞ (3.27)

where L is the Lipschitz constant for f and M is a suitable constant depending on q and χ∗. An
application of Gronwall’s inequality completes the proof. 2

In a practically relevant problem, it is very likely that we will be forced to use a numerical method
to approximate a solution because no analytical method will be available. The results of this section
then allow us to determine a useful step size that is sufficiently small so that the final accuracy is
as good as the accuracy of the input values permits and, at the same time, is not smaller than this
value such that we do not waste computing time. We consider this further in the next section.

4 Numerical Examples

Here we apply a numerical method to equations of the general form

Dq[y − y0](x) = βy(x) + f(x) (4.1)

where x ≥ 0, y(0) = y0, β < 0.
For example, if we choose

f(x) = x2 +
2

Γ(3− q)
x2−q

and q = 0.5, y(0) = 0, β = −1 then (4.1) takes the form

D0.5[y](x) = −y(x) + x2 +
2

Γ(2.5)
x1.5 (4.2)

which has the exact solution y(x) = x2.
First we investigate the effect of allowing the value of q to vary from q = 0.5. We apply the numer-

ical method proposed in [3] with step sizes h = 0.1, h = 0.04 and h = 0.01 to obtain approximations
to y(5) and y(10) for each value of q. The results are given in Tables 1 and 2.

The linear relationship we established between the varying order of the equation and the value
of y(5) is shown in Figure 1. The corresponding results for y(10) are given in Figure 2. For each of
the fixed h values, the numerical solution gives a linear relationship.

Our second numerical experiment demonstrates the linear dependence of the solution to the
fractional differential equation (4.2) on the initial value y(0). We calculate the approximate values
for y(5) and y(10) using step sizes of 0.1, 0.04, 0.01 while varying y(0). The results are shown in
Tables 3 and 4 and Figures 3 and 4.

We investigate the dependence of the solution on the parameter β, i.e. on the given function on
the right-hand side of the fractional differential equation. In Table 5 and Figures 5 and 6, we present
the values of y(5) and y(10) based on a fixed step size of h = 0.01.
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q h = 0.1 h = 0.04 h = 0.01
0.550 25.01405030111854 25.00375890423636 25.00050763171870
0.545 25.01371464296153 25.00365336017018 25.00049010283544
0.540 25.01338603093830 25.00355054656276 25.00047315211826
0.535 25.01306432821298 25.00345039636885 25.00045676111642
0.530 25.01274940030596 25.00335284407958 25.00044091194712
0.525 25.01244111506028 25.00325782568950 25.00042558727656
0.520 25.01213934260864 25.00316527866574 25.00041077030504
0.515 25.01184395534069 25.00307514191634 25.00039644474968
0.510 25.01155482787034 25.00298735576046 25.00038259483141
0.505 25.01127183700364 25.00290186189772 25.00036920525733
0.500 25.01099486170704 25.00281860338034 25.00035626121071

Table 1: Approximate values of y(5) evaluated with varying step lengths and varying order

q h = 0.1 h = 0.04 h = 0.01
0.550 100.015296437580 100.004076937070 100.000548982376
0.545 100.014937630203 100.003963955510 100.000530188484
0.540 100.014586044344 100.003853813098 100.000512002828
0.535 100.014241551014 100.003746443768 100.000494406622
0.530 100.013904023117 100.003641782838 100.000477381642
0.525 100.013573335429 100.003539766984 100.000460910186
0.520 100.013249364582 100.003440334220 100.000444975080
0.515 100.012931989042 100.003343423867 100.000429559648
0.510 100.012621089090 100.003248976534 100.000414647707
0.505 100.012316546803 100.003156934087 100.000400223546
0.500 100.012018246037 100.003067239640 100.000386271932

Table 2: Approximate values of y(10) evaluated with varying step lengths and varying order
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y(0) h = 0.1 h = 0.04 h = 0.01
0.050 25.02266431941116 25.01445566778726 25.01197766419020
0.045 25.02149737364074 25.01329196134656 25.01081552389235
0.040 25.02033042787034 25.01212825490586 25.00965338359432
0.035 25.01916348209992 25.01096454846518 25.00849124329636
0.030 25.01799653632950 25.00980084202448 25.00732910299840
0.025 25.01682959055909 25.00863713558380 25.00616696270046
0.020 25.01566264478868 25.00747342914309 25.00500482240254
0.015 25.01449569901825 25.00630972270241 25.00384268210459
0.010 25.01332875324785 25.00514601626172 25.00268054180664
0.005 25.01216180747744 25.00398230982102 25.00151840150870
0.000 25.01099486170704 25.00281860338034 25.00035626121071

Table 3: Approximate values of y(5) as y(0) varies, with fixed order q = 0.5

y(0) h = 0.1 h = 0.04 h = 0.01
0.050 100.020567464937 100.011604140634 100.008917138237
0.045 100.019712543046 100.010750450535 100.008064051607
0.040 100.018857621156 100.009896760435 100.007210964976
0.035 100.018002699267 100.009043070336 100.006357878346
0.030 100.017147777377 100.008189380236 100.005504791715
0.025 100.016292855486 100.007335690137 100.004651705085
0.020 100.015437933597 100.006482000038 100.003798618455
0.015 100.014583011706 100.005628309938 100.002945531824
0.010 100.013728089817 100.004774619839 100.002092445194
0.005 100.012873167927 100.003920929740 100.001239358563
0.000 100.012018246037 100.003067239640 100.000386271932

Table 4: Approximate values of y(10) as y(0) varies, with fixed order q = 0.5
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−β y(5) y(10)
0.950 25.75553419940738 103.462147285658
0.955 25.67800857286032 103.105359288544
0.960 25.60093945057858 102.750992731494
0.965 25.52432288617439 102.399023351291
0.970 25.44815497780766 102.049427203874
0.975 25.37243186756982 101.702180659165
0.980 25.29714974087831 101.357260396004
0.985 25.22230482588010 101.014643397176
0.990 25.14789339286536 100.674306944535
0.995 25.07391175369062 100.336228614213
1.000 25.00035626121071 100.000386271932

Table 5: Approximate values of y(5) and y(10) as β varies, with fixed q = 0.5, h = 0.01
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Figure 5: Approximate values of y(5) as β varies, with fixed q = 0.5, h = 0.01
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Figure 6: Approximate values of y(10) as β varies, with fixed q = 0.5, h = 0.01

Let us finally discuss the choice of a suitable step size in a numerical scheme for the solution
of fractional differential equations of the form (1.4) under the assumption that the given data are
inexact. We have seen that errors of magnitude O(ε) in any of the given parameters (order of the
differential equation, initial values, or the right-hand side) result in an O(ε) change in the exact
solution. Thus, under this assumption of inexactness, we cannot expect to find a solution with
a higher accuracy. A consistent (i.e. practically useful) numerical algorithm must reproduce this
behaviour. Therefore, there is no point in choosing the parameters of the numerical scheme in such
a way that the errors introduced by the approximation algorithm would be significantly smaller.

Arguing heuristically, we may therefore postulate the following rule of thumb for the choice of the
parameters of the numerical method. We have three different functions to deal with: yex, the exact
solution of the differential equation, obtained by specifying the given data precisely; yan, the analytical
solution that we calculate (in theory) by solving the equation with perturbed data exactly; and ynum,
the numerical solution obtained by solving the equation with perturbed data in an approximate way.
We do not have any influence over the error εdata := yex − yan which is caused by the inexactness of
the given data, but by choosing the parameters of the numerical method we may change the error
contribution εnum := yan − ynum, i.e. the error caused by the numerical approximation scheme, and
therefore also the total error

yex − ynum = εdata + εnum.

As already mentioned, the basic idea is that we want the two parts of the error to be similar in
magnitude. We explain our way to achieve this goal by using the example above. Assume we want
to approximate yex(5), where yex is the exact solution of the fractional differential equation (4.2) with
the initial conditions stated there. From the calculations with a coarse mesh (like h = 0.1), we find
an approximation of 25.01099 · · · . Now assuming a relative error in the given data of δ, we expect
the relative error in the solution yan to be of a similar size, i.e. we conclude

εdata ≈ 25δ,

and therefore we try to choose the stepsize of the numerical scheme such that

εnum ≈ 25δ

too. To do this, we note that by [3, Proof of Theorem 1.1] the error is bounded by

γq
sin πq

π
‖y′′‖∞ 5qh2−q
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where h is the step size, and

γq = −2ζ(q − 1)

q(1− q)

(cf. [4, Thm. 2.3] and [6, Thm. 1.2]). Here, ζ is the Riemann Zeta function. In our case, q = 0.5,
and the approximations for the function values lead to the estimate ‖y′′‖∞ ≈ 2. This leads to the
conclusion

h ≈ 4.8δ2/3.

Let us for example assume that the order q is subject to a relative error of 1 per cent, i.e. δ = 0.01.
Then we obtain a step size of 0.22. This means that our initial choice of the step size, h = 0.1, was
actually smaller than necessary, and we may accept the results obtained in this way. There is no
need for a refinement of the grid that we use for the approximation algorithm.
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